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ABSTRACT

A finite difference method is developed for the large de-

formation elastic-plastic dynamic buckling analysis of axisym-

met ric spherical caps w ith ini tial imperfectio ns. The problem

formulation is based on governing differential equations of

motion , treating the plastic deformation as an effective plas-

tic load. Both perfectly plastic and strain hardening behavior

are impl emented in the program . Strain hardening is in cor por ated

through use of the Prager-Ziegler kinematic hardening rule , so

that the Bauschin ger effect is accounted for. The solution for

the large deformation elastic-plastic dynamic response of a

spher ica l cap is compared very favorably with other findings.

Two spher ical cap models are selec ted to study the title problem.

Results obtained indicate that both plastic yielding and initial

imperfection play significant roles in reducing the load carry-

ing capacity of these shell structures . Both increase their

inf luence as the thickness to radius ratio and the imperfec tion

mag n it ude increa se , respec tively. It is also found that dynamic

effect has the inf luence of lowerin g load carrying capaci ty of

perfect spherical caps; however , its influence on imperfec t ~~~~~

spherical caps depends on the magnitude of initial imperfections



INTRODUCTION

Dynamic bucklin g analysis of shell structures has been the

subject of intense stud y. Shell structures designed according

to quasi-static analysis may fail under conditions of dynamic

loading. For a more realistic prediction on the load carrying

capac it y of these shells , in addition to the dynamic effect ,

cons idera tions should al so in c lude other fac tor s such as non-

l inearities in both material and geometry , ini tial imperfec-

tions , etc., since these factors , in a differen t manner , may

also affect the magnitude of this capacity.

Lar ge de fo rma t ion dynam ic buck lin g ana lys is wa s stud ied

by several authors , no tably  Bud ian sky and Ro th [1], Huang [2], ,

Stephens and Fulton [3], Stricklin , et al. [4] and Ball and

Burt [5]. A striking difference between the static and dynam ic

buckling analyses is on the buckling criterion . The dynamic

snap - through , suggested in [1] and adopted in all these studies ,

is generally accepted as a means to obtain dynamic buckling

load s of spher ica l caps under un iform step load ing. Results of

sph e r ical cap s ob ta ined f rom thes e studies  are in reasonable

agreemen t .

Effect of ini t ial impe rfec t ion s on dynami c bucklin g loads

of ax isymmetric spherical caps was examined in Ref. [6]. It is

found that ini ti al imperfection s do ind eed have the effect of

reducing the cap buckling capacity, and that the rate of change

of th e buckling load with respect to the imperfection is
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greater when caps respond staticall y than dynam ically. Two

types of load ing were also treated in Ref . [6], namely ,  step

pressure of infinite duration and triangular pulses of various

time durations. It is also revealed that the pulse duration

has a very profound impact on the magnitude of the dynamic

buckling load , and that the step load ing of inf ini te dura tion ,

as a limiting case of triangular pulses , provide s the most severe

l oad ing situati on for the dynam ic buckling analysis.

The combined effect of material and geome tric nonlineari-

ties on the shell behavior was studied by Marcal [7] , Bushn ell

[8],, Levine , et al. [9]., and Kao [10],; the effect of initial

imperfections was also considered in Ref. [101. It is observed

in Ref . [101 that both initial imperfection and plastic de-

formation have a similar influence of reducing shell load

carrying capacity, and that the influence of plastic de-

formati on decreases with incre ase of the imperfec tion magnitude .

I t is also found from this reference that the cap geometric

Parameter A , an important factor in the elastic response , be-

comes meaningless in the elastic-plastic buckling analysis of

spherical caps.

The purpose of this paper is to ob tain large deformation j
elastic-plastic dynamic buckling loads of axisymmetric spherical

caps with initial imperfections. The problem formulation is

based on equilibrium equations of motion , treating the plastic

deform ation as an effective plastic load [10 ,11]. Governing

equations are replaced by finite differences and a direct
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me thod is applied for the time integration . At each time step,

a relaxation technique [12] is introduced to solve nonlinear

algebraic equations . Plasticit y relations are derived from the

incremental flow theory [13] together with the von Mises in-

itial yield criterion and the Prager-Ziegler kinematic harden-

ing rule [14 ,15]; this rule predicts an ideal Bauschinger

e f f ec t .

In the next two sections, governing equations of motion

and plasticity relations are subsequently given . This is fol-

lowed by the description of the general solution procedure and

dynam ic buckling cr iteria. In the NUMERICAL RESULTS AND DIS-

CEJ SSION sec t ion , first , the presen t so lu tion of the large de-

formation elastic-plastic dynamic response of a spherical cap

is compared with other findings; then , results of the title

problem are presented and a general discussion on these re-

suits is given . Conclusions are outlined in the final section.

GOVERNING EQUATIONS OF MOTION

The geometry of a spherical cap is shown in Fig. la , in

whi ch (I is the central height , R the shell radius and a is the

base radius; W(r ,t) and U(r ,t) .~re the displ acements along nor-

mal and tangential directions , respec tively, and W1(r,0) is

the initial imperfection ; q(r ,t ) is the app l i ed  p re s su re . The

undcforme-I shape of the perfect spherical cap can be adequately

de sc r ibed  by

Z = H [1 - (r/a)2] Cia)
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where r is the radial coordinate. The radius of curvature of

the shell is approximated by

R = a2/211 (ib) I
Fi gure lb shows an elemen t with the stress resultants Nr

and N 0, the transverse shear C
~r 

and the momen ts Mr and M0. The

equations of equilibrium including inertia forces in this ele-

inent are

(rNr) 
- N0 = 0 ( 2 )

[rNr (Wf 
- Z) + rQr] + rq = rphW (3)

(rM r) 
- M0 

- rQr 
= 0 (4)

where h is the shell th ickness , p is the mass per unit volume

of the shell and W~ = W + W
~
; prim e and dot denote differ en-

tiations with respect to r and t , respectively, and 0 is the

circumferential coordinate.

It is noted that , in l i ght of the assumed shallowness ,

the effect of transver se shear and radial inertial force

rphU in Eq. (2) is neglected , and that the nonl ine ari ty has

been introduced in Eq. (3) by considering the influence of Wf.

Eliminating 
~r 

in Eqs . (3) and (4), we ob tain

I d

2 1 Wf
+ ~~~ M~. - 

~~
- M~ + N r (9• ’ + 

~
) + N

0(~— 
+ 

~
) + q = ~ hW . ( 5 )

Eqs. (2) and (5) are the basic equations for the dyn amic

:tnalysis of axisymmetric spherical caps in this paper . To 
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solve these two equations , we elect to express them in terms

of the components U and W of the d isplacem ent. For this pur-

pose , stress-strain and strain-displacement relations are re-

(luir ed.

Stress-Strain and Strain-Displacment Relations

For a shell deforming into a plastic range , the strain in

a point within the thickness can be considered as a combination

of its elastic and plastic components:

{e} = {ee} + {e~ } (6)

where {e}, {e e} and {e~ } are the total , elastic and pl ast ic

strain vectors , respectively. The total strain can also be ex-

p re ssed as a sum of the membr an e and bend ing com ponen ts:

{e~ 
= { c }  + z { K }  (7 )

where z is the vertical coordinate through the shell thickness

(Fig. Ib).

Membrane  and bend in g st ra in s are re la ted to d isp lacemen ts

by

C = U ’ - + .
~(W’)

2 + W ’ W !

U W
C

o 
= -

(8)
K r 

=

W I
K 0 

= -
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Note that the elastic components of strains are the only

strains which can be related to stresses by h ook’ s law :

{o} = [E~ ({e} - {e~ }) (9)

where [E], the elastic strain to stress transformation matrix ,

is  g iven  as

11 v 1
[E ] = 

L 2 1 I (10)
1-v L v  ii

in which B is Young ’s modu lus and v is Pois son ’s ratio.

Membrane stress resultants and bending moments are ob-

tained by

hI 2
(N) = {o }dz (11)

-h/ 2

hI 2
(M} = f {o }zdz  . (12)

- hI 2

Substituting Eqs. (6-9) into Eqs. (11) and (12) , we obtain

the membr an e f orces

I::! = 

~~~~~ L:nl 

- (13)

where the effective plastic membrane forces are

= ( E ]  f12 
~~~ 

( 14) . 1
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and the moments

= 
Dr 

- H (1 5)

wher e D = Eh 31l 2 (l-v 2), and effective plastic moments are

= [E ]  
ih/ 2  ~~~~~ 

zdz (16)

Governing Equations in Displacements

The gove rn ing  equa t ion  invo lv ing  the f i r s t  m a j o r  displace-

ment  U can now be obtained by substituting Eq. (13) into Eq. (~):

hi” + ~~
— - 

~~
-
~~

- + G(W) .  = 
l~ \.~2 

qç (17)

where

G(W) = F~~(W) + vF~~(W) + ~~ ( F - F 0 )

F (W) = -W I R + ( W ’) 2 / 2 + W ’ W ~

Fê (W) = - W I R (18)

F ~. (W )  = - W ’ / R + ~~~‘ ~~
“ + t~’ ~~~

‘•‘ + W” W

F~~(W) =

and q~ , an effec tive pla sti c load , is rel ated to effective

p las t ic stres s resul tan ts by

= (N~ )’ + N~ / r -N ~ /r  (19)

.1 
_ _  _  

1
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The second equation involving W as its major displ2cement

can also be obtained by substituting Eq. (15) into Eq. (5)

DV 4 W - 
Eh ( ÷ ) ( W ~ + l/ R) - 

l~ v 2 0 ~~~~~~~~~~~ 
+ l/ R)

= q - q~ - q~ - phW (20)

where  V 4 
= V2 (V 2) and V2 ( ) = ( ) “  + ( ) ‘ / r ;  the membrane

strains Cr ,cO are def ined in E qs. (8), effective plastic loads

q~ and q~ are given as

q~ = N~ (W~+1/R) + N~ (W~ / r +l ,/ R)  (21)

q~ = (M~)” + 2(M~)’/r - (M~)’/r (22)

Equa t ions  (17) and ( 2 0 )  are two f u n d a m e nt a l  govern ing

equa t ions  in te rms  of d i sp l acemen t s  for  the  p resen t  a n a l y s i s .

Boundary Cond it ions

At the  she l l  apex , the  n a t u r e  of ax i s y m m e t r y  r equ i r e s  tha t

W (0) = 0 (23 )

U ( 0 ) = 0 (2 4 )

A l o n g  the o u t e r  ed ge (r  = a ) ,  i f  the  cap is c lamped:

U ( a )  = W ( a )  = W ’ (a )  = 0 . (25)

On the  o the r  hand , if  the cap is simply supported , it re-

quires that 

~~~~ . . ------~~~~. -.— --- - ---- - -- - - . --~~~~~~~~~—-. --
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U(a) = W (a) = 0 (26a)

and that Mr(a) in Eq. (15) to be zero , i.e.

D(~~~ + ~ ~~) -M~~( a ) ,  r = a (26b)

where is defined in Eq. (16).

Nond imens iona l  Form

For conven ience , f ol lowin g nond imens iona l  quan t it ie s are

introduced:

x = n a  m 4 
= l 2 ( l - v 2 )

A 2 = m~ a 2 / Rh q~~. = 4Eh 2 /R 2 m 2

( ) = ~( ) / B x  p (r,t) = q (r , t ) / q~~ ( 2 7 )

( )  = a (  ) / a ~~ U = aU/ h 2

I = = W/ h

w~ = W . / h

where q~~ is the classical buckling pressure of a complete

spherical shell of the same radius of curvature and thickness.

By us ing Eq . (27), nondimensional forms of Eqs. (17) and

(20) become

U
” + 

~~~~~ 2 + g (w) = 
( 1- )a 3 

q P (28)

- - 

and ~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —

V4 W - 12( ~~r~~~~~) ( ~~~
+ ?~) 

- l2 (
~ o +V

~ r) (
~ ~

)
= 

~~ 

A 
- 

m 
~ (q~ +q

1
~) - X~ w (29)

m Eh

where  g ( w )  and f ( w )  terms are nondimen siona l counterparts of

similar terms in Eq. (18)

g ( w )  = f~~(w) + vf~~(w) + (l~ v ) [ f r (w) - f0(w)]/x

= - 

~-2 w + ~ (w ’) 2 + w ’w~

f0(w) 
= - 

~~~~~~ w (30)

2
f~~(w) = - 

~~~~~~ w ’ + w ’ w” + w ’w’-’ +

2
f~ (w) = -

and 
~r ’ ~~ 

are nondimensional quantities of membrane strains

1r 
and in Eq. (8)

= if - 
~~

-
~~

- w + 
1
(w’) 2 + w ’wI

(31)
2

— u A
= — - —

~~
- w

CONSTITUTIVE EQUATIONS OF PLASTICITY

The response of an elastic-plastic material can he described

[151 by

________ ._ . ___ iI--

~

.. .. . i__~ . ___
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(a) an in itial yield condition , specifying the state

of stress for which plastic flow first sets in ,

(b) a flow rule , relating the plastic strain increment

with the stress and the stress increment , and

(c)  a hard en in g rule , specif ying the subsequent yield

condition in the course of plastic flow .

In this paper , the von Mises yield condition , which descr ibes a

smoo th surf ace in stre ss space and represen ts a s imp le ma thema-

tical function , is chosen as the initial yield condi tion. The

flow theory of von Mises and the Prager-Ziegler kinematic har-

denin g rule are also selected; this rule predicts an ideal

Bauschin ger effect.

In a 9-space stress field with origin 0 (Fig. 2), the von

Mises initial yield surface can be describ ed by

F(o..) .= k 2 
= constant (32)

For an initially isotropic material , the form of the function F

is invariant with respect to a rotation of the stress state.

The Prager ’ s ha rden ing  ru le  [14] assumes that during plastic

deformation , the yield surface moves in a transla tion wi thout

changing its shape and hence the subsequent yield surface takes

the form

- 

~~~ 
= k2 (33)

where ajj represents the total translation of the yield surface

cen ter which i s a me asure of the degree of work hardening. In
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the space a~~ , 
~~ 

is the position vector of the yield surface

center C which before plastic deformation takes place is located

at the origin (Fig. 2).

The f low ru le  of von Mise s g ives the fo l lowing express ion :

de~~ = dx , dx > 0 (34)

which indicates that the plastic strain increment de~~ l i es  in

the exterior normal of the yield surface (33).

The Zi eg ler ’s modifica tion [15] of Prager ’s hardening

rule suggests that the surface (33) moves in the direction of

the radius connecting its center with the stress point (Fi g. 2):

da~~ 
= 

~~~~~~~~~~~~ dji 0 (35)

dA in Eq.  (34) and dp in Eq. (35) are to be determined.

Determina ti on of d~i is based on the condition that stress

point always remains on the yield surface in plastic flow .

T h i s  cond i t i on , in fact , states that for an i n f i n itesimal in-

crement of loading the vector da
~~ 

- da
~~ 

mus t be or thogonal to

the out er norma l to the y i e l d  sur fac e :

~F ( o ~~
. - a .  . )

( d a . . -da . . )  13 = 0 . (36 )

Substituting (35) into (36) yields

(
~
F/aa k~

) dok~dp = 

mn mn~~~~~~~mi 
(37a)

and hence
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(~~F/~~a k~)do k~dci.. - = (o. . - c i . . . )  (37b)
I_

~~~ mn mn ’”~~mn 13 13

According to Refs. [14,15], ~A in (34) can be obtained

by assuming da1~ 
= cde~~ and p u t t i n g  t h i s  r e l at i on  in to  (36) :

(~~F/~ a )do
- 

~ (~ F/D cJ )(aF/~ c 5 )  a

and hence 
-

~ 
(aF I ~ o1, )do

— _ _ _  (38b)
ii 

- E (~F7~ O )(~ F/~~ ) ~c J . .

where c is the hardening coefficient and can be determined

from the uniaxial stress-strain relation.

Now , let us wri te Eq . (33) in terms of 3 princi pal

stresses:

f = F - k2

= ~~[(~ l~~~2 ) 2 + (~~2~~~3) 2 ÷ (a3 -~1) 2 ] - a~ = 0 (39)

where °y is the yield stress in un iaxial tension and 
~l 

=

01 
- ‘

~l 
G

2 
= 0 2 - ci 2 ,  03 

= 03 
-

For the case of plane stress (Fig. 3), we have

(40)

and E((. (39) reduces to

~~~~~~~~~~~~~~~~~~~~ 
2~~~~ (41)

By pu tt ing Eq . (39) into Eq. (38b) and us ing re lation s
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( 4 0 - 4 1 ) ,  we o b t a i n

= 

[S 152 
:ç2] t ~~~~~~~~~~~. ( 4 2 )

where

S1 
= (

~ l~~ 2/2)0y ‘ 
= 

2 l /’2)
~
’0y D = c . (43)

From Hook’s law , we have

= 
E 

~2L  i ~::; L ( 4 4 )

It is also noted that

Ae~ A c Ac 1’
= 

1 
- 

1 (45)
Ac 2 Ae 2 Ae~

Introducing (42) into (44) provides

= [C 11 C
121 

Ac 1 j (46)
Ao 2 L C 21 C22J Ae2

where

C11 
= (D+E S~)

C 12 
= 

~~ (Dv-ES 1S2) 
= C 2 1

C 2 2  = (D+E S~ )

H = D(1-v 2) + L(S~ +2v S1S2+S~)



-

. 

- - - - 

~~- 1 5 -

For a given displacement field , ( A c )  are o b t a i n e d  f rom incre-

men tal forms of Eqs. (7) and (3). Eqs. (46) are the stress-

strain relations during the course of plastic flow (loading).

Otherwise , Eqs. (44) should be used for all other stress corn-

putat ions.

Up to this point , the hardening coefficient c in Eq. (43)

is the only constant yet to be decided . If the structure is in

a state of uniaxial stress , the stress-strain relation is the

same as that obtained from tension or compression tests. The

expression for the hardening coefficient c can be readily ob-

tained from Eq. (42) by settin-g Ac 1’ = Ae~~, Ao =

1 — 3 Ac ”— -  — (47a
C

or

D = ~~~~~~~~~ ( 4 7 b )
Ae ’~

Th is e q u a t i o n  shows that the value of D is equal to the slope

of the uniaxial stress-plastic strain curve.

From Eqs. (47), the values of the hardening coefficient

for two special cases m a y  he specified here : (i) for an

elastic-ideally plastic material , c = D = 0 , ( i i )  f o r  a l i n e a r

ha rden in g mate r ia l , D = EE t / ( E _ E t ) ,  where  is the tangen t

modu lus. Un i axial stress-strain curves for these two types

of hardening material are given in Fi g. 4.
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Nonlinear Hardenin g

Also given in Fi g. 4 is the stress-strain curve for a

n o n l i n e a r  h a r d e n i n g  m a t e r i a l .  I t s  D va lue , i n s t ead  of be ing

a constant , depends on the state of stress. One way of deal-

ing w i t h  t h i s  r a t h e r  c o m p l i c a t e  s i t u a t i on  is based on the

Ramherg-Osgood representation of a uniaxial stress-strain

curve [18]:

n-i
0 (48)00 7

log (17 / 7 )whe re  n = ~ + 
~ ( 1 -

‘~og ~0 O 7 10
0 35)

e i s  the to ta l  s t r a i n , E is the slope of the linear portion

of the stress-strain curve , and 00 7  and 0085  are the stress-

es at which the curve has secant moduli of 0.7E and 0.85E ,

respectively.

It is understood that the nonlinear term in Eq. (48) is

the plastic strain. D value of this materia l can be obtained

as

n-l
7E 00 7 (49a)

We may generalize this equation to a m ultiaxial state of

s t ress  [16 ,17 ] :
n -  1

7~: 0

—

. (49b )
a

where ~~~~, the effective stress , is defined as
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= / .~- o~~~ o1~ (50a)

in which o~~ is the deviatoric stress. For the case of plane

stress ,
— 2 2
O = 0

1 

- 0
1 

0 2 + 02 . ( S O b )

Loading Criteria

In the incremental solution procedure for elastic-plastic

p r o b l e m s , in a d d i t i o n  to the  c o n s t i t u t iv e  r e l a t i o n s , it is

necessary to have a loading/unloading criterion. For this

purpose , let’ s def ine f = (~ f/aa1~ )d~~..~ where f has been

de f i n ed in Eq . ( 39 ) .  Loadin g, un loadin g an d neu tr al load in g

are associated with the plastic state f = 0, and are

c h a r a c t e r i z e d  by f > 0 , f < 0 and f = 0 , r e s p e c t i v e l y .  When

l o a d i n g  or n e u t r a l  load ing  takes  p lace , Eq.  ( 46 )  mus t  be

app lied. On the other hand , Eq. ( 4 4 )  mus t  be used when un-

l o a d i n g  occurs .

SOLIJT ION STRATEGY

For convenience , a simple flow chart is sketched in Fig. 5

to demonstrate the general solution procedure . The entire pro-

cess , which is to obtain for a given applied load q (or p) an

elastic-plastic transient response of axisymmetric spherical

caps , is divided into two major loops , namel y, the elas t ic

solution and material property loops .
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In the elastic solution loop , all material properties at

a sp e c i f i c  t ime I are held constant. Consequently, the effec-

tive plastic loads , q~ in  govern in g equa t ions ( 28) and (2 9)

are fixed and combined with the actual externally applied load

q, the problem is thu s reduced to an elastic large deformation

~ rob 1cm .

The second t i m e  d e r i v a t i v e  of w in E q . (2 9) is approxima ted

by the lioubolt’ s third-order backwards difference expression [19]:

~ (x ,T )  = (1/62) [ 2w (x ,T) - Sw (x,T - 6)

+ 4w (x ,T - 2 6 )  - w (x ,-t - 36)] (51)

where 6 = AT is the equal  t i m e  i nc r emen t .  The accuracy of th i s

representation is of order 62. Special attention is devoted to

the  f i r s t  few t i m e  s teps where Eq.  (5 1) cannot  be appl ied

di r ectl y.  B e f o r e  g i v i n g  the e x p r e s s i on  for these first few

t i m e  s teps , we note  t h a t  the  i n it i a l  c o n d i t i o n s  are of the form

w (x , O) = 0 , ~~i (x ,O) = 0 (5 2)

From Eq.  ( 5 2 ) ,  express ion  of Eq.  (51) fo r  the  f i r s t  few

time steps can readily be obtained [2] as

I) T = 0 , w (x , O) = 0

2) T = 6; since i~~ (x ,O) = 0 , we have w (x , - 6 )  = w (x ,6)

and hence  i~ (x , 6) = ( 2 / 6 2 ) w (x , 6)

3) t = 2 6 ;  ~ (w , 2 6 )  = ( 2 / 6 2 ) [w (x , 2 6 )  - 3w (x ,6)]

4 )  i > 26 , Eq . (9)  can be app l ied di rec tl y.
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At t h i s  po in t , c e n t r a l  f i n i t e  d i f f e r e nc e s  a re  used to trans-

form Eqs. (28) and (29) to a discrete system of equations , and

the nonlinear relaxation technique [12] is employed to solve

these nonlinear equations . The iteration in this loop is con-

sid ered converged when the average absolute change of u and w

d i s p l a c e m e n t s  at al l  po in ts  is less than .0001.

W i t h  the  new d i sp lacement  f i e l d  {u} k , the  ma ter ial prop er ties

mus t  he updated so that  the (nonlinear) stress-strain relation

can he s a t i s f i e d  at a l l  po in ts  over the  she l l  su r f ace  and through

the  t h i c k n e s s .  In the ma te r i a l  p roper ty  loop , the loading

c r i t e r i o n  is f i r s t  checked. If the mate r ia l  point  is in an un-

l o a d i n g  s i t u a t i o n  or s t i l l  in the e l a st i c  range , h ook’ s law is

used and the computa t ion  is very  s t r a i g h t - fo r w a r d .

If the material point is in a loading situation , incremen ta l

s t r a i n s  I A e }  are computed f rom Eq.  ( 7 )  by u s ing  ( A u )  =

- {u}k 1  (where k is the number of the material property

lo op,  se e F i g .  5 ) ,  and {Ao }  are computed f rom Eq.  (46) . l I av ing

o b t a i ned {A o ) ,  we f i n d  new va lues  of {o } , {e e } and {e 1’) .  The

effective plastic loads q~ ar e then evalua ted from integra tion

f o r m u l a e  (19) , (21)  and ( 2 2 )  th rough  the  use of a Simpson ’ s

r u l e  (9 t h i cknes s  po in t s  are used for  the  en t i r e  computa t ion

in this paper) .

The m a t e r i a l  p r o p e r t y  is considered to be upda ted if aver-

age absolute change of displacements between the present and

I rev i ou s ma ter ial p roper ty loop is le ss than 0 .0005 . Otherwise ,

the iteration goes to the elastic solution loop and the entire
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o p e r a t i o n  is r epea ted  u n t i l  the  m a t e r i a l  p r o p e r t y  and e q u i l i b r i u m

equations are simultaneously satisfied.

In  our n u m e r i c a l  c o m p u t a t i o n , the number  of nodal  p o i n t s

are se l ec ted  such t h a t  a subsequen t  inc rease  in nodal  p o i n t s

does not  s i g n i f i c a n t l y  a f f e c t  the  m a g n i t u d e  of the s t a t i c

buckli n g lo ad.  W i t h  t h i s  cons ide ra t ion , 14 nodal  p o i n t s  fo r

A = S and UI) to 22 p o i n t s  for  A = 10 are adopted .

A time step must also be selected very judiciously. A good

s e l e c t i o n  is such t h a t  the  r e s u l t s  are w i t h i n  a des i r ed  accuracy ,

1)ut not  too s m a l l  in  l i ght  of computer  t ime c o n s i d e r a t i o n s .  A

reasonab le  compromise  of equal t ime increments  of 6 = 0.10 is

used ;  t h i s  same t ime i nc remen t  is also se lected in R e f .  [ 3 ] .

The a x i s y mm e t r i c  i n i t i a l  i m p e r f e c t i o n  adopted in t h i s

stud y is of the  d i m p l e  type which  was a lso used in R e f .  [ 6 ] .

T h i s  type  of i m p e r f e c t i o n  is expressed  m a t h e m a t i c a l l y  as

w 1 = (ti /h)(l - x2)3 (53)

where W~0 is the maximum imperfection which  occurs at the  she l l

a p e x .  Se lec t ion  of t h i s  express ion  is , in fac t , quite arbi-

trary. However , it does 1 rov ide an ade quate descr i pt ion for

a c t u a l  s h e l l s  s ince  the  impor tan t  p a r a m e t e r  is the maximum

e c c e n t r i c i t y  and not  the i m p e r f e c t i o n  shape f u n c t i o n .

i ) Y N A M I C  B U C K L I N G  C R I T E R I O N

C r i t e r i a  fo r  dynamic  a x i s y m m e t r i c  b u c k l i n g  of the s h a l l o w

s p h e r i c a l  s h e l l  are not  as w e l l  d e f i n e d  as for  s t a t i c  b u c k l i n g ,



- 21 -

and  r e q u i r e  an e v a l u a t i o n  of t h e  transient response of the shell

fo r  v a r i o u s  load l e v e l s .
-J

The c r i t e r i o n  adopted most widely (Ref~ . [1-6]) is based

on plots of the peak nondimensional average displacement in time

h i s t o r y ,  Amax~ of the  shell structure versus the amplitude of

the load where i, is th e average displacement and has been defined

[3 , 5 , 6]  in dimensionless form as follows :

A = 

f
rwdr / (54)

The numerator is the  volume generated by the shell deformation

and the d e n o m i n a t o r  is the  c on s t a n t  vo lume under  the cap .

For loads be low the  dynamic  b u c k l i n g  load , where  the  non-

l i n e a r i t i e s  are sma l l , the r elatio n sh ip be tween  A max and the

l o a d  a m p l i t u d e  is a p p r o x i m a t e l y  l i n e a r .  However , there may

ex ist a ce r tai n v al ue of load am p lit u de at wh ich a ve ry  small

i n c r e a s e  in t h i s  a m p l i t u d e  p roduces  a ve ry  l a r g e  in A max • T h i s

load  is d e f i n e d  as the c r i t i c a l  p r e s s u r e  fo r  a x i s y mr n e t r i c

h u c k i  i ng .

Nt J ME R I CAL RESULTS AND D I S C U S S I O N

T n r e f e r e n c e  [ 10 ]  , a c o m p u t e r  p r o g r a m  was successfully

developed for the large deformation elastic-plastic analysis

of s p h e r i c a l  caps w i t h  i n i t i a l  i mp e r f e c t i o n s .  T h i s  p rog ram is

e x t e n d e d  to i nc lude  the d y n a m i c  e f f e c t  for  the  c a l c u l a t i o n  in
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this paper. Before proceeding to obtain numerical results for

the title problem , it is advisable to solve an example problem

and compare the present result with other existing so1~~~ions.

The comparison should be very meaning ful if other solutions

arc obtained using complete different method and theory fr•3rn

the  approach  adopted  h e r e i n .

C o m p a r i s o n  w i t h  Other  So lu t ions

The example problem c o n s i d e r e d  here  is the  dynamic  response

of a s h a l l o w  s p h e r i c a l  she l l  s u b j e c t e d  to a u n i f o r m l y  distributed

e x t e r n a l  s tep p r e s s u r e  q = 600 lb/in. 2 Geometric dimensions

and m a t e r i a l  I )r op e r t ie s  are o u t l i n e d  in F i g .  6. A t o t a l  of 14

stations along radial direction , 9 thickness points and a time

step of A t = l0~~ seconds are used for the  c a l c u l a t i o n .  The

m a t e r i a l  is assumed to obey von M i s e s  i n i t i a l  y i e l d  c r i t e r i o n

wit h linea r ki nemati c hardening.

The large deformation elastic-plastic dyn amic response is

presen ted  in Fi g. 6 , which  also shows the  r e su l t  obta ined by

assuming the cap to remain elastic throughout the analysis. The

s t a t i c , e l a s t i c - p lastic so luti on is also g iven in t h i s  f i g u r e .

The effect of material nonlinearity on the dynam ic behavior

of the  cap is s i g n i f i c a n t .  I t  is obse rved  t h a t  t h e  mean  va lue

abou t  w h i c h  t h e  apex d i s p l a c e m e n t  o s c i l l at e s  is g r e a t e r  in the

e l a s t i c - p l a s t i c  s i t u a t i o n  c o m p a r e d  to the  e l as t i c  a n a l y s i s

w h e r e i n  t h e  v i b r a t i o n  occurs  a r o u n d  the  s t a t i c  d i s p l a c e m e n t .

Fi gure 6 also displays the solutions obtained by Nagarajan
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and Popov [ 2 0  1 and B a t h e  , R ai :n and l~ i i  so n 2 1 ]  . B o t h  sd ut  IO O S

were based on the finite element formulation , von ~Iises y ield

cond i t  ion w i t  ii l i n e a r  i so t  ro~ i c h .~ r de n i ng and  a Ne wma rk gen —

er - i :ed a c c e l e r a t i o n  schc ~ i e .  D e s n i t e  ( l i f ~ er e nces  in t h e  solu-

t i o n  m e t h o d  amid t h e o r y  employed , t h e  co~in a r i s o n  among these

results is excellent. It is n o t e d  t h a t  t h e  same t ime s t e p

(lO 5sec.) is also used in t h e i r  c o m p u t a t i o n s .

With the validity of the computer pro~ ram established for

nonlinear dynamic analysis as demonstr ated in this examp le , we

now proceed  to t a c k l e  t h e  t i t l e  p r o b l e m  in t h e  F o l l o w i n g  Se c t i o n .

La r ge D e f o r m a t i o n  h i a s t  i c - P l a s t i c  D y n a m i c  B u c k i  ing  of Sp h e r i c a l  Caps

1~rom R e f .  [ 1 ( 1 ] ,  we f i n d  t h a t  the  large deformation elastic-

p l a s t i c  r e sponse  of a x i s y m i n e t r i c  s p h e r i ca l  caps u n d e r  s t a t i c

uniform loading is independent of cap geometric naramete r k , a

factor used to characterize the e l a s tic sp heric al cap be h a v i o r ,

and rather depends on individual geometric dimensions. In other

words , two  di f fe r en t  sphe r i c a l  ca p s w i t h  t he  s am e A v al u e ha v e

the same load carrying capacity 
~~~ 

in elastic analysis , but

m a y  yield different magnitude of elas tic-plastic bucklin g pres-

su re s.

According to this observation , two  t y p e s  o f s p h e r i c a l  caps

s t u d i e d  in  [ 1 0 ] ,  ~ i t h  v e r y  m u c h  differenc e i n  geometrical di-

itm ensions , are selected again for the present analysis. They

a re i d e n t i f i e d  as s h e l l s  A and  B in F i gs . 7 and 9 , r e s p e c t i v e l y .

\ t 1  g e o m e t r i c a l  d i m e n s i o n s  in  s h e l l s  \ and  B a rc  f i x e d  w i t h
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exception that the thickness can be varied. By selecting

Ii = 0.26 in. and 0.0227 in. respectiv ely for shells A and B ,

1)0th caps y i e l d  the same g e o m e t r i c a l  i a r a m e t e r  A = 5 , hut  have

d i f f e r e n t  va lues  of the thickness to radius ratio (h/R = 0 . 0 1 0 4

for  she l l  A and 0 . 0 0 4 8  f o r  she l l  B ) .  M a t e r i a l  p r o p e r t i e s  of

bo th  ca p s g iven in  the  f i g u r e s  are assumed to obey von Mises

i n i t i a l  y ield c o n d i t i o n  w i t h  l i n e a r  k i n e m a t i c  h a r d e n i n g .

i n R e f .  [6] , two types  of d y n a m i c  l oad ing  were considered

for  -the b u c k l i n g  a n a l y s i s  of e l a s t i c  ax i symm et r i c  spher ica l

caps :  u n i f o r m  s tep l o a d i n g  w i t h  i n f in i t e  d u r a t i o n  and a r i g ht

t r i a n g u l a r  p u l s e  w i t h  v a r i o u s  t i m e  duration . Results obtained

f r o m  t h i s  r e f e r e n c e  revea l  t h a t  pu lse  d u r a t i o n  has  a very  s i g n i f -

i c a n t  impact on the magnitude of the dynamic buckling load , and

t h a t  t h e  st ep load ing  p rov ides  a more severe l o a d i n g  situation

t h a n  the  r i g h t  t r i a n g u l a r  pu l se  fo r  d y n a m i c  a n a l y s i s.  Based on

t h i s  con cl u s io n , o n l y  u n i f o r m  s tep l o a d i n g  w i t h  in f i n i t e  d u r a t i o n

is c o n s i d e r e d  f o r  the  p r e s e n t  a n a l y s i s.

As m e n t i o n e d  in SOLUT I ON STRATEGY , a j u d i c i o u s  choice of

t i m e  s t ep  A T  = 0.1 is used f o r  a l l  computations in this paper.

A total response time of t = 50 is also chosen so tha t  if there

is no sudden jump in the average displaceme nt ~ or no con-

vergence failure in iteration during this period of time , we

assume that no bucklin g occurs at this load. Convergence

criteria are specified in Fig. S.

Some large deformation elastic -plastic dynamic response

c u r v e s  f o r  s h e l l s  A and  B are shown in Fi gs. 7 and 8, respec-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--
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tivel y, which also show shell A b u c k l e s  at  i = 0 . 2 6  w h i l ecr

s h e l l  B at 0 . 3 6 .  For c o m p a r i s o n  p u r p o s e s , some da t a  of i n t e r e s t

a r e a l s o  l i st ed h e r e: b o t h  c a p s  ha v e t h e  sam e e la s t i c d y n a m i c

buc k l i n g load  
~cr = 0.46 [61, while their elastic-plastic static

1)uck l ing  v a l u e s  are 0 . 3 1  f o r  s h e l l  A and 0 . 5 0  f o r  s h e l l  B [ 1 0 ] .

According to these results , some observations may be in

o r d e r .  F i r s t , b u c k l i n g  loads fo r  s p h e r i c al  caps of e l a s t i c

m a t e r i a l  a re  r e l a t e d  to  their geometric parameter ~~~. Secondly,

p l a s t i c  y i e l d i n g  p l a y s  a s i g n i f ic a n t  ro le  in r e d u c i n g  the

b u c k l i n g  p r e s s u r e  of s p h e r i c a l  caps ;  t he  i n f l u e n c e  of p l a s t i c

y i e l d i n g  i n c r e a s e s  w i t h  i n c r e a s e  of the  t h i c k n e s s  to r a d i u s

r a t i o .  For e x a m p l e , p l a s t i c  y i e l d i n g  reduces  t h e  dynamic

b u c k l i n g  pr ess ur e 
~~~ 

f o r  s h e l l  B ( h / R  = 0 . 0 0 1 8)  f r o m  0 . 4 6  to

0.36 , a 22% r e d u c t i on in  b u c k l i n g c a p a c i ty .  On t he  o t h e r  h an d ,

t h e  red uc t i on i n c re ases to  4 3~ ( f r o m O A~ te  0. 26)  fo r  sh e l l  A

(h/R = 0.0104). T h i s  i n d i ca t e s  t h a t  t h e  g e o m e t r i c  p a r a m e t e r  A

beco m es m ea n i n g l ess in e l a s t i c - p l a s t i c  a na l y s e s .  A n o t h e r

im n p o r t a n t  o b s e r v a t i o n  is t h a t  t h e  d y n am i c  e f f e c t  a l s o  reduces

the  b u c k l i n g  p r e s s u r e  of s p h e r i c a l  caps .  T h i s  is e v i d e n c e d  by

t h e f a c t  t h a t d y n a m i c  e f f e c t  cu t s  down e l a s t i c - p l a s t i c  b u c k l i n g

l o a d s  f o r  s h e l l  A f rom 
~cr 0. 31 to 0. 26 , fo r  s h e l l  B f rom 0 .50

to 0 . 3 6 .

From d y n a m i c  r e sponse  c u r ve s  in Fi gs .  7 a nd 8 , i t  is found

t h a t  in t h e  load r a n g e  above t h e  b u c k l i n g  p re ssu re  a l a r g e r  load

level  r e q u i r e s  a s h o r t e r  r e sponse  t i m e  to  reach A max or to

generate convergence failure in iteratio n. This seems to be
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t r u e  f o r  a l l  cases  t r e a t e d  h e r e i n  excep t  for  one s i t u at i o n

which will be discussed when the  case is e n c o u n t e r e d .

Because of having a greater thickness to radius ratio and

hence be ing  more s e n s i t i v e  to p l a s t i c  d e f o rm a t i o n , she l l  A is

se l ec t ed  to e x a m i n e  the e f f e c t  of i n i t i a l  i m p e r f e c t i o n s  on the

cap e l a s t i c - p l a s t i c  dynamic  b u c k l i n g  pressure . On the  o the r

hand , she l l  B is s tud i ed  aga in  to e s t a b l i s h  more  evidence on

how the  e f f e c t  of p l a s t i c  y i e l d i n g  on the  b u c k l i n g  p r e s s u r e  is

influenced by the thickness to radius ratio.

By setting h = 0.0101 in. and 0.0057 in. for shell B of

Fi g.  8, two caps are obtained , one hav in g ~ = 7.5 and h/R = 0.0021

and the other A = 10 and h/R = 0.0012. Large deformation elastic -

plastic dynamic response curves displayed in Figs. 9 and 10

show tha t buckl ing loads are re ad as 
~cr 

= 0.43 for A = 7.5 and

0.46 for A = 10 , while their corresponding el a stic dynamic

values are 0.44 and 0.49 , respectively [101. Reduction in

buckling loads because of plastic yielding in these two cases

may be neglected. Insensitivi ty to plastic deformation in these

situations may be attributed to the fact that as the thickness

to radius ratio becomes smaller , the membrane effect tends to

be more dominant. At the time when the cap buckles , the de-

velopmnent of plastic deformation may he still very limited or

of minor importance.

it is noted that Fig. 9 provides the first and only excep-

tion that a smaller load magnitude takes a shorter response

time to reach Amax or to yield convergence failure in itera-
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tion , although the difference between the maximum response

times for p = 0.43 and 0.44 is negli g ible.

Now , let us examine the combined effect of nonlinearities

i n  m a t e r i a l  and geomet ry  and i n i t i a l  i m p e r f e c t i o ns  on the

d y n a m i c  b u c k l i n g  of sp he r i ca l  caps .  As a l r e a d y  ment ioned

earlier , shell A of A = 5, whose geome t r i c  and m a t e r i a l  pro-

perties are given in Fi g. 7 , is selected for this analysis.

Three values of initial imperfections W~ o /h = 0. 1 , 0 . 5  and 1.0

impos ing  on the  cap domain of she l l  A are cons idered .  Dynamic

response  curves of these three cases are shown separately in

F i gs .  11 , 12 and 13.

B u c k l i n g  loads read f rom these  f i gures  are 1
~cr = 0 . 2 5 ,

0 . 1 7  and 0.13 for W. 0 /h = 0.1 , 0 . 5  and 1.0 , r e s p e c t i v e l y .  These

values together with those of static-elastic , dynamic-elastic

a n d s t a t i c e l a s t i c-p l a st i c  [6 , 10] are l i s t ed  in Table  1 and

p l o t t e d  in Fig. 14. Also recorded in Table 1 for compar ison

purposes  are some b u c k l i n g  loads o bt a i n e d  in Fi g. 8 and R e f .

[10] for shell B (A=5 ).

T a b l e  1. B u c k l i n g  loads for  two c l amped  sphe r i ca l  caps ( s h e l l
A, A = 5, Fi g. 7; s h e l l  B, A = 5, Fi g . 8 )

Elastic Elastic-plastic
iO shells A and B shell A shell B

Th Stat ic Dynamic Static Dynamic Stat ic Dynamic
[6] [6] [10] [10]

0 .6 4 . 4 6  .31 . 2 6  . 5 0  .36

.1 .54 .39 .28 .25 .43 -

.5 .32 .28 .20 .17 .27 -

1 . 0  . 15  .185 .12  .13 .15 -
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R e s u l t s  e x h i b i t e d  in F i g .  14 show t h a t  i m p e r f e c t i o n s  do

indeed have a si g n i f i c a n t  impac t  in r educ ing  b u c k l i n g  c a p a c i t y

for all cases considered here , althoug h they  are in f luenced  in

a d i f f e r e n t  m a n n e r .  The d i f f e r e n c e  in b u c k l i n g  load r educ t i on

may be examined  f rom two d i f f e r e n t  bases .  F i r s t , if the  cx-

am inat ion is focused on the same material property (elastic or

e l a s t i c - p l a s t i c ) ,  the  r a t e  of change  of the  b u c k l i n g  p r e s s u r e

~cr w i t h  respect  to the  i m p e r f e c t i o n  W~ 0 /h is s m a l l er  for  the

d y n a m i c  response  than  fo r  the  s t a t i c .  As a r e s u l t , the reduc-

t i o n  of b u c k l i n g  loads  due to dynamic  e f f e c t  decreases  wit h
*i nc rease  of the im p e r f e c t i o n  m a g n i t u d e .  As the  i m p e r f e c t i o n

ex ceeds a ce r t a i n mag n i tu de (W 10 / h  > 0.75 and 0.85 for the

elastic and elastic-plastic material , respectively) , the

dynamic buckling loads may he even hi g h e r  t h a n  t h e  cor respond-

i ng s t a t i c  b u c k l i n g  v a l u e s .  T h i s  f i n d i n g  su g g e s t s  t h a t  t h e

s t a t e m e n t  - - the dynamic effect introduced by a time-dependent

load can reduce the  load c a r r y ing c a p a c i t y  of a s t r u c t u r e  [ 2 2 ]

- - i s  t r u e  fo r  the  p e r f e c t  s p h e r i c a l  cap , bu t  not  n e c e s s a r i l y

t r u e  fo r  the  cap w i t h  i n i t i a l  i m p e r f e c t i o n s .

Second ly , if the examination is centered on the same

loading situation (static or dynamic ), results in Fig. 14

c l e a r l y  d e m o n s t r a t e  t h a t  bo th  p l a s t i c  y i e l d i n g  and i n it i a l

i m p e r f e c t i o n  have the  same e f f e c t  of l o w e r in g  the  s h e l l  load

c a r r y ing c a p a c i t y .  Fi gure  14 a l so  shows t h a t  the  i m p e r f e c t i o n

*This reduction is referring to the difference between static
and dynamic buckling loads under the same material property and
t h e  same imperfection magnitude W~ 0 /h  (se e Fi g . 14 ) .
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is a more dominant factor , since the influence of plastic

y i e l d i ng d i m i n i s h e s  as the  i m p e r f e c t i o n  m a g n i t u d e  i n c r e a s e s .

The i n f o r m a t  ions d i scussed  here  are q u i t e  u s e f u l  fo r

s p h e r i c a l  cap des i gn s .  A v a l i d  desi gn of these  s t r u c t u r e s

should reflect the actual material property, consider both

static and dynamic responses , and also take into account the

estimated magnitude of imperfections in light of manufacturing

considerations.

CONCLU S I ONS

The objective of this paper is to obtain large deformation

elastic-plastic dynamic buckling loads of axisymmetric spherical

caps with initial imperfections. The problem formulation is

based on governing differential equations of motion , treating

the plastic deformation as effective plastic loads which are

combined together w-ith actual applied forces.

Equa t ions of mo ti on are conver ted into a d iscre te sys tem

of equations by replacing all spacewise derivatives with central

finite differences and the second time derivative with a

Ilouholt’ s third-order backwards difference expression [19].

Resulting nonlinear algebraic equations are then solved by a

step-by-step time integration scheme for displacements. At

each step of integration , the solu ti on procedure is div ided in to

two major loops , n a m e l y ,  elastic solution and material pro-

per ty loops.

In the elastic solution ioop, all  ma te r i a l  proper ties are
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h e l d  cons t an t  and n o n l i n e a r  equ at  ions  are so lved  by the non-

l i n e a r  relaxation techn i que [12]. Tn the material property

l oop ,  m a t e r i a l  p r o p e r t i e s  a re  up da ted  to co r re spond  the  new

computed  s t a te  of s t r e s s  to t h e  s p e c i f i e d  s t r e s s - s t r a i n  rela-

t i o n .  The procedure  c o n s i s t i n g  these  two loops is  repea ted

u n t i l  govern ing  equa t i ons  and the s p e c i f i e d  s t r e s s - s t r a i n  re-

l a t i on a r e s a t i sf ied a t a l l  p o i n t s  over the  s h e l l  su r face  and

t h r o u g h o u t  the  t h i c k n e s s .  The s o l u t i o n  p rocedure  d i scussed

here is sketched in F i g .  5 fo r  r e f e re n c e s .

The p1asticity relation adopted herein is an incremental

f l o w  th eory w h i c h is based  on v on M i s e s i n i t i a l  y i e ld  con d i t i on

and the Prager-Ziegler kinematic hardening rule . It is no ted

t h a t  t h i s  t h e o r y  t akes  in to  accoun t  the  B a u s ch i n g e r  e f f e c t  and

that the computer program developed for the present analysis is

equ ipped  to h a n d l e  the  m a t e r i a l  of e l a s t i c - p e r f e c t ly p l a s t i c ,

l i n e a r  and n o n l i n e a r  h a r d e n i n g  b e h a v i o r .  N i n e  t h i c k n e s s  p o i n t s

and a S impson  r u l e  a re  used f o r  a l l  n u m e r i c a l  c a l c u l a t i o n s  of

plastic deformation in this paper. A dimple type of imperfec-

tions is selected which provides a quite adequite description

of t he loca l  n a t u r e  of s p h e ri c a l  s h e l l s .

To verify the validity of the theory and the solution

m e t h o d  emp l oyed , t h e  p r o c e d u r e  is a p p l i e d  to o b t a i n  the  l a r ge

deformation elastic-plastic dynamic response of a spherical

cap ( F i g .  6 ) .  The present solution along with those obtained

1)y N a g a r a j a n  and Popov [ 2 0 ]  and B a t h e , Ram m and W i l s o n  [21]

are d i s p l a y e d  in  F i g .  6. T h e i r  s o l u t io n s  are based on a f i n i t e
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e l emen t  f o r m u l a t i o n , i so t rop ic  s t r a i n  harden ing  and a Newmark

time integration scheme. Desp ite d i f f e r ences in the theory

and s o l u t i o n  methods  u t i l i z e d , the  compar i son  among t hese  t h r ee

sets of r e s u l t s  is r e m a r k a b l y  good.

The solution procedure  is then  a p p l i e d  to solve the  t i t l e

pr o b l e m ; two sp h e r i c a l  cap m o d e l s  shown in Fi gs .  7 and 8 are

chosen for the present analysis. The loading exerted on the

cap s u r f a c e  is assumed to be a uniform step pressure of infinite

dura t i on . The r e s u l t s , which  are g iven  and discussed in grea t

d e t a i l s  in t h e pr ev ious sec t i on , may be s u m m a r i z e d  as follows :

(1) For  a x i s y m me t r i c  s p h e r i c a l  caps of e l a s t i c  m a t e r i a l ,

t h e i r  s t a t i c  and dynamic  b u c k l i n g  loads  
~~~~~ 

are f u n c t i o n  of

cap geometric parameter A. h owever , for  caps of e l a s t i c - p l a s -

tic material , these values are independent of A. This means

that two spherical caps , which have the same A value but dif-

ferent geometric dimensions , may yield the same magnitude of

b u c k l i ng load 
~~~~~ 

if t h e i r  m a t e r i a l s  are e l a s t i c ;  however ,

their 
~cr va lu es may be d i f f e r en t i f the i r  ma ter i a ls  are elas-

tic-plastic. For example , Table 1 shows that if both shells A

and B (both have A = 5) are made of the elastic material , thei r

s t a t i c  b u c k l i n g  loads are of the same magnit ude 
~~cr = 0 . 4 6 ) ;

bo th also have the same dynam ic buckl in g value 
~~cr = 0 . 4 6 ) .

But when their materials are assumed to be elasti c-p lastic ,

the  s t a t i c  b u c k l i n g  loads are 0 .31  and 0 . 5 0 , and the dyn am ic

v a l u e s  are 0 . 2 6  and 0 . 3 6  for  s h e l l s  A and B , r e s p e c t i v e l y .

(2) Plastic yielding plays a sign i f ican t rol e in reducin g
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t he  b u c k l i n g  p r e s s u r e  of s p h e r i c a l  caps.  The i n f l u e n c e  of

p l a s t i c  y i e l d i n g  increases with increase of the thickness to

r a d i u s  r a t i o .  This obscrvation may be illustrated from Table

1 t h a t  p l a s t i c  yielding reduces the dynamic buckling pressure

~cr  fo r s h e l l  B ( h/ r  = 0 . 0 0 4 8 )  f rom 0 . 4 6  to 0 . 3 6 , a 2 2 %  re-

duc t  ion in b u c k l i n g  c a p a c i t y .  On the o the r  hand , t h i s  reduc-

t i o n  i nc reases  to 43% ( f r o m  0 . 4 6  to 0 . 2 6 )  f c r  she l l  A ( h / R  = 0 . 0 1 0 4 ) .

(3) For perfect spherical cap s , dyn am ic e f f e c t has an

i n f l u e n c e  of lower ing  t h e i r  load ca r ry ing c a p a c i t y .  Th i s  can

be seen f r o m  Table  1 t h a t  dynamic  e f f e c t  cuts  down t h e i r  e l a s t i c -

p l a s t i c  buc k l i n g l oa ds 
~~cr~ 

f rom 0 .31 to 0 . 2 6  and f rom 0 . 5 0

to 0 . 3 6  for  s h e l l s  A and B , ?e spec t i vel y.

(4 )  For i m p e r f e c t  spher ica l  caps , dynamic  e f f e c t  on t h e i r

load  c a r r y i n g  c a p a c i t y  depends on the  m a g n i t u d e  of i m p e r f e c t i o n s .

For example , the elastic results of shell A (A=5) displayed in

Fi g.  14 d e m o n s t r a t e  t h a t  when i m p e r f e c t i o n  W~ 0 /h is less than

0.75 , its dynamic 
~cr 

values are smaller than its static values.

On t h e  o the r  hand , when W 10 /h exceeds 0.75 , the situation is

c o m p l e t e l y  r eve r sed .  A s i m i l a r  s i t u a t i o n  is a lso  observed for

s h e l l  A of e l a s t i c - p l a s t i c  m a t e r i a l .

F i n a l l y ,  i t  may be conc luded  t h a t  a r e a l i s t i c  des ign  of

s p h e r i c a l  caps s h o u l d  be based on the  a c t u a l  m a t e r i a l  p r o p e r t y ,

consider both static and dynamic responses , and take in to

accoun t  the  e s t i m a t e d  m a g n i t u d e  of i m p e r f e c t i o n s  in l i ght  of

i t i a n u f a c t u r i n g  c o n s i d e r a t i o n s.
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